

MQ1 Dual Power Automatic Transfer Switch

General

With the development of society，people has higher requirement on reliable supply power．Lots of places use two－path power supply in order to guarantee the reliability of supply power．Under this case，we need a kind of device can reliably transfer between two－path power supply to guarantee the supply power reli－ ably and safely．MQ1 automatic transfer switch is a special device developed for the purpose of such requirement．This product has two kind of switchover function of self－operation self－recover and self－opera－ tion non self－recovery．It is a kind of automatic transfer goods with lately design，perfect performance，high automatic degree and wide usage．

Application

MQ1 automatic transfer switch（hereinafter call as MQ1）is suitable for two－path power supply system with $\mathrm{AC} 50 \mathrm{HZ} / 60 \mathrm{HZ}$ ，rated working voltage 400 V ，rated current from $6 \mathrm{~A} \sim 800 \mathrm{~A}$ ．It can automatically transfer power supply to reserve power or generator when common power occurring fault so as to guaran－ tee the reliability and safe of supply power．MQ1 has the protective function of overload，under－voltage， short circuit and lack phase which is especially suitable for using in the place where does not allow power supply failure，such as fire fighting，hospital，marketplace，military project，high－rise building，bank，TV station and so on．

Standards

IEC 60947－1 or GB14048．1 《General Rules》

- IEC 60947－2 or GB14048．2 《Low voltage breakers》
- IEC 60947－6－1（1989）or GB14048．11 《automatic transfer switch electric》

Notice：1．Reset selection：automatic switch with restore is no code，and automatic switch without restore code is N ．
2．Release type：instantaneous code is＂2＂，and double is no code．

Working Condition

\checkmark Ambient medium temperature：less than $+40^{\circ} \mathrm{C}$ and more than $-5^{\circ} \mathrm{C} ; 24 \mathrm{~h}$ average value less than $+35^{\circ} \mathrm{C}$ ； －Altitude：not over 2000m；
The max ambient air relative humidity when the maximum temperature is $+40^{\circ} \mathrm{C}$ does not surpass 50% ， in compares under the low temperature to be possible to allow the high relative humidity，the wettest monthly average min temperature is $+25^{\circ} \mathrm{C}$ ，this monthly mean maximum relative humidity is 90% ，the dew on the surface of the product must be taken into consideration because of the temperature change．

Class of pollution： 3
The breaker should be put in the place where there isn＇t any explosive medium and conductive dust and no gas，which would corrode metal or destroy the insulation．

Table． 1

Normal	Reserve	Control Function
Power	Power	Normal power supply electricity：Q2 OFF，Q1 ON
Normal	Normal	Q1 ON after time－delay and recover power supply power
Abnormal	Normal	Q2 OFF after time－delay，Q1 ON recover normal power supply power

Notice：Q1－Control Normal Power Circuit Breaker
Q2－Control Reserve Power Circuit Breaker
Switchover operation time delay（0～30S，factory default value is 3 S if user has not special requirement）Return operation time delay（ $0 \sim 30$ s，factory default value is $3 S$ if user has not special requirement）．
Regarding to the transfer switch of self－operation non self－recovery，see Table 2 for its control function： under Auto state，when the normal power occurs fault or abnormality after a certain delay time it can automatically transfer to reserve power to supply power．When the normal power recovers normal，it failed automatically return to normal power．It only can return to normal power after a certain time－delay time when the reserve power occurs fault or abnormality．

Table. 2

Normal Power	Reserve Power	Control Function
Normal	Normal	Normal power supply electricity: Q2 OFF, Q1 ON
Abnormal	Normal	Q1 ON after time-delay and recover power supply power
Recover Normal	Normal	Still supply power from reserve power
Normal	Abnormal	Q2 OFF after time-delay, Q1 ON recover normal power supply power

Notice:
Q1 ——Control Normal Power Circuit Breaker
Q2 ——Control Reserve Power Circuit Breaker
Switchover operation time delay ($0 \sim 30 \mathrm{~S}$, factory default value is 3 S if user has not special requirement)
Return operation time delay ($0 \sim 30$ s, factory default value is $3 S$ if user has not special requirement).
This switch is mainly used for switchover between two-path power supply in power network as well as power network and generator. In power network - generator supply power system, the generator usually is used for reserve power. See Table 3 for other control function: when the power network voltage is lower than $70-80 \%$ of rated voltage, it can autaomatically start generator. When the generator mains voltage reached to normal (above 80% rated voltage), switch on generating power supply. After the power network voltage recovers normal (reach to above 80\% rated voltage), it will cut off the load circuit from generating power after a certain time-delay, and automatically return to normal power supply.

Table. 3

Normal Power	Reserve Power	
Normal	Normal	Normal power supply electricity: Q2 OFF, Q1 ON
Abnormal	Normal	Generator group generating
Abnormal	Normal generation	Generator group will supply power onceits generating voltage reach to above 80\% rated voltage
Recover Normal	Generation	Q1 ON after time-delay and recover power network supply power

Notice: Q1-Control Normal Power Circuit Breaker

Q2-Control Reserve Power Circuit Breaker
Switchover operation time delay ($0 \sim 30$, factory default value is 3 S if user has not special requirement)
Return operation time delay ($0 \sim 30$ s, factory default value is 3 if user has not special requirement).

ATS Dual Power Automatic Transfer Switch

Main technology parameter

- The control power of the automatic controller and motor mechanism is AC230V.
- The transfer device is suitable the system of rated working voltage is AC400V.
- The operating life of the transfer device (N-R-N cycle) is 5000 times.
- The minimum transfer time is in 1-3s.

The specification
unit: mm

Type	MCCB	Frame current (A)	Rated working voltage(V)	Rated current(A)	Rated limit short circuit breaaking capability(KA)	
MQ1-63W	MM5-63	63	400	6, 10, 16, 20, 25, 32, 40, 50, 63		6
MQ1-63Type	MM1-63	63	400	(6), 10, 16, 20, 25, 32, 40, 50, 63	L	35 50
MQ1-100Type	MM1-100	100	400	10, 16, 20, 25, 32, 40, 50, 63, 80, 100	L	35 50
MQ1-160Type	MM1-160	160	400	100, 125, 140, 160	L	$\begin{aligned} & 35 \\ & 50 \end{aligned}$
MQ1-225Type	MM1-225	225	400	100, 125, 140, 160, 180, 200, 225	L	$\begin{array}{r} 35 \\ 50 \\ \hline \end{array}$
MQ1-400Type	MM1-400	400	400	225, 250, 315, 350, 400	L	$\begin{array}{r} 50 \\ 65 \\ \hline \end{array}$
MQ1-630Type	MM1-630	630	400	$400,500,630$	L	$\begin{aligned} & 50 \\ & 65 \end{aligned}$
MQ1-800Type	MM2-800	800	400	630, 700, 800	S H	$\begin{gathered} 65 \\ 100 \\ \hline \end{gathered}$

Notice: M type is 690V, W is MM5; L, M are MM1; S, H are MM2.
Overall and mounting dimension

Integrative type(Y)Type
unit: mm

Dimensions Specification	$\begin{gathered} \mathrm{A}(\mathrm{~L}) \\ 3 \mathrm{P} / 4 \mathrm{P} \end{gathered}$	$B(W)$	$\begin{gathered} \hline \mathrm{C}(\mathrm{~L}) \\ 3 \mathrm{P} / 4 \mathrm{P} \end{gathered}$	DW	$\begin{aligned} & \mathrm{H}(\mathrm{H}) \\ & 3 \mathrm{P} / 4 \mathrm{P} \end{aligned}$
MQ1-63(W)	420/420	220	390/390	90	120/120
MQ1-63Type	440/470	220	410/440	190	125/135
MQ1-100Type	440/470	220	410/440	190	120/135
MQ1-160Type	480/520	240	450/490	210	140/160
MQ1-225Type	480/520	240	450/490	210	140/160
MQ1-400Type	620/670	300	590/640	270	235/235
MQ1-630Type	660/800	300	630/770	270	240/250
MQ1-800Type	680/840	300	650/810	270	250/250

Notice: The height of MH type of 3 poles is the same as 4 poles.

Overall and mounting dimension

Fission type(F)type

| Dimensions
 Specification | | $\mathrm{A}(\mathrm{L})$
 3P/4P | $\mathrm{B}(\mathrm{W})$ | $\mathrm{C}(\mathrm{L})$
 $3 P / 4 \mathrm{P}$ | DW |
| :---: | :---: | :---: | :---: | :---: | :---: | | $\mathrm{H}(\mathrm{H})$ |
| :---: |
| MQ1-63(W) |

Notice: The height of M H type of 3 poles is the same as 4 poles.

MQ2 Dual Power Automatic Transfer Switch

Application

MQ2 series dual power automatic transfer switch is one of adopted international ATSE technology developed by our company. It is suitable for power supply system with rated insulating voltage is AC800V, rated working voltage is AC 690 V , and below DC 250 V , and $\mathrm{AC} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$, rated working current is $20 \mathrm{~A}-5000 \mathrm{~A}$ of two-path. The transfer switch and the matching intellect display, they are main used for high building, the post and communication, coal mining, shipping, military facilities industrial assembly line etc the situation of need the interruption power supply. Under the city rapid increase power supply necessary trend, they can satisfy the higher requires of reliable power supply, the products have reliable performance, small size and easy operation etc features.
Attention: It must not do the test of insulating stand voltage for the quality guarantee.

Classification

- M2 is two steps: M2 I and M2 II
- M3 is three steps: M3 I and M3 II

According to the transfer controller: automatic switch with restoration, automatic switch without restoration

- Transfer mode: Power network-Power network, Power network-Generator
\checkmark Intelligent controller: C: LCD dynamic display, L: internal controller, E: LED economic external controller
- Number of poles: 3,4

According to the connection way: front panel, back panel
Current: 20, 32, 40, 63, 80, 100, 125, 160, 200, 225,250,350,400,500,630,800,1000,1250,1600,2000, 2500,3150,4000,5000

Environment conditions for operation and installation

Ambient temperature: $-5^{\circ} \mathrm{C}-+40^{\circ} \mathrm{C}$, and average temperature in24 hours below $+35^{\circ} \mathrm{C}$ (except for special orders).

- Elevation of installation site $: \leqslant 2000 \mathrm{~m}$

Pollution protection: 3 grade
-The breakers used on ships and in humid tropical area can work normally without influence of humid air, salt fog and mildew.

- The breakers used on ships can operate reliably under normal vibration.
- The breaker should be installed according to stipulations on operating manual. For breakers in common use, the vertical gradient isn't more than $5^{\circ} \mathrm{C}$, for that used on ships, the vertical gradient isn't more than $22.5^{\circ} \mathrm{C}$.
- The breaker should be put in the place where there isn't any explosive medium and conductive dust and no gas which would corrode metal or destroy the insulation.

Main function feature
Reliable and safe interlock.
It has reliable connection and disconnection main circuit and second circuit function, and the setting has self-locking function.

- It has safety insulation isolate.

Quick transfer speed,(the transfer time is $0.1 \mathrm{~s}-0.2 \mathrm{~s}$), low malfunction, easy maintenance, and reliable capability. Small in volume, simple in constitution, large current and ATSE integrate.

- With the controller, the setting can transfer between the manual and automatic, and has the every protection function.
Make sure the facility safe, it has neutral pole N input first and breaker later function, which can avoid of the abnormal voltage.
- It adopts DC instantaneous excite way.
- Electric degree: PC class.

System sketch map

Technology parameter

Type	M2 I type	M2 II type	M3 I type	M3 II type
Rated working current	20A-500A	20A-500A	20A-500A	20A-5000A
Rated limit short circuit current (according to the current degree)	12.5KA-30KA	12.5KA-25KA	12.5KA-25KA	12.5KA-25KA
Short time stand current (according to the current degree)	5-12KA	5-10KA	5-12KA	5-50KA
Transfer time (exclude the special input delay)	0.1-0.2s	0.1-0.2s	0.1-0.2s	0.1-0.5s
With controller or not	No	Yes	No	Yes
Automatically start the generator	No	Yes	No	Yes
Control mode	Automatic switch with restore Automatic switch without restore	Automatic switch with	matic switch with restore	Automatic switch with restore
Connection way	Front panel connection	Front panel conne	nt panel connection k panel connection	Front panel connection
Rated working voltage	AC400V/690V, DC125V/250V			
Rated control voltage				
Rated working frequency				
Connection and disconnection capability	AC-33B(10le ON 8le OFF) $\cos \mathrm{F}=0.35, ~ D C-33 \mathrm{~B}$ 1.1le ON L/R=1ms			
Electric class	PC Class			
Usage sort	AC-33B DC-33B			
Test mode	Power network-power network, Power network-- generator			
life	Electric life 2500 Number Mechanism 10000Number			
Auxiliary switch capacity	AC100V 5A, AC220V 2.5A, DC100V 0.5A			
Accessory	Protection cover(630A‥), Manual specification, Product certificate, Credit card, Manual handle			
Number of pole	2, 3, 4			

The difference of twao steps M2 and three steps M3

Two steps have two transfer states: power A supply $\leftarrow \rightarrow$ power B supply, and the frame current can up to 500A
Three steps have three transfer states: A supply $\leftarrow \rightarrow$ middle position $\leftarrow \rightarrow$ power B supply, and the frame current can up to 5000A.

Hand-operated methods and notice matters

We can guarantee the switch performance of electric-drive operation, but the difference between strength, speed of the switch. When the handoperated switches do the load switching, the contacts may be consumed and dissolved etc. If need artificial manual operation and please implement under the following condition, please avoid hand operating in other occasions.
1)When there is no operation power at all.
2)When inspect the operating mechanism and contact part, there is no load.
3)Damages happened and cannot action.

Notice: When artificial hand operating, the operating power has to be cut off.

M2 Manually trip methods put in method of A B power sides

Insert the front nick of manual handhold into the left operating axis.

Pull down the handhold and that can throw in.

Visual inspect ON/OFF indicator to confirm throw-in.

Please take down the operating handhold after operating.

M3 hand-operated methods
Hand-operated handhold

A power side thrower-in methods

Insert the front nick of manual handhold into the left operating axis.

Visual inspect ON/OFF indicator to confirm throw-in.

Insert the screwdriver into the left side TRIP hole and press inside, and then the switch will trip. (Please confirmed by the ON/OFF indicator if the switch is trip.)

B power side thrower-in methods

Insert the front nick of manual handhold into the left operating axis.

Insert the screwdriver into the right SECLECT hole and press inside.

Keep the screwdriver in the position that press on and pull up the hand-operated handhold at the same time. That can throw in B-side switch.

Visual inspect ON/OFF indicator to confirm: throw-in. please take down the operating handhold after operating.

Two-path switch and has two separated contacts

- Have trip device, and has (OFF) position
\checkmark operating order :

(0) 5

Safety design
It has dustproof resin protector, and operating safety.

M2 main technology index:

Manual handle
See the using and selection to detail.

Inside () is thickness of the dope

	(1)	(2)	(3)	(4)	(5)	(6)	(1)	t
400 A	210	$25(26)$	10.1	15	15	$\varnothing 8$	50	$6(7)$
$600 \mathrm{~A} \sim 1600 \mathrm{~A}$	250	$38(40)$	16.1	20	15	$\varnothing 8$	41	$6(8)$
2000A 3000A	320	$50(52)$	19.1	25	15	$\varnothing 8$	50	$9(11)$
4000 A 5000 A	420	$50(52)$	19.1	25	15	$\varnothing 8$	50	$9(11)$

Shutoff features:

- Depend on the operating voltage, and breaking characteristic of spring-produced strength.

Notice: 1.DC current operation situation, the structure of circuit is same, only a little part is different, please accord to DC current operation indication to operate.
2.40A 63 A are out of abnormal, and contact with us about the overall dimensions.
3.the technology capability M2 350A-500A are the same as the M3 350A-500A.

ATS Dual Power Automatic Transfer Switch

M3 main technology index:

Notice: 1.DC current operation situation, the structure of circuit is same, only a little part is different, please accord to DC current operation indication to operate.

M3 main technology index

Notice: 4000A 4P, the capacity of N contact is 2000A.

ATS Dual Power Automatic Transfer Switch

M2 M3 overall and mounting dimensions:

M2, M3 20A~63A

Panel safety distance (dimensions) (S1 dimensions: $30 \mathrm{~mm}(400 \mathrm{~V}), 60 \mathrm{~mm}(690 \mathrm{~V})$

	A	B
2 P	188	88
3 P	210	110
4 P	232	132

Panel safety distance (dimensions) (S1 dimensions: $30 \mathrm{~mm}(400 \mathrm{~V}), 60 \mathrm{~mm}(690 \mathrm{~V})$

M2, M3 160A~250A
Panel safety distance (dimensions) (S1 dimensions: $30 \mathrm{~mm}(400 \mathrm{~V}), 60 \mathrm{~mm}(690 \mathrm{~V})$

1. Operating circuit terminal
2. Hand-operated handhold 2. Hand-operated handhold entrance
3. Auxiliary switch
4. A power side main circuit terminal

5. Main circuit terminal load side
6. B power side main circuit

	A	B
2P	219	113
3P	254	148
4 P	289	183

7. ON/OFF selector
8. Hand-operated handhold (movable type)

M2 M3 overall and mounting dimensions:

		A			B		C	D	E	F	G	H
	$2 P$	$3 P$	$4 P$	$2 P$	$3 P$	$4 P$						
360A 800A	340	405	470	310	375	440	80	65	60	117.5	$10 / 15$	15
1000A 1250 A	370	450	530	340	420	500	88	80	60	117.5	$12 / 15$	15
1600A	410	510	610	380	480	580	97.5	100	57	117.5	15	15

ATS Dual Power Automatic Transfer Switch

M2 II internal controller Function brief specification

M3 2000A～4000A
S1尺寸： $50 \mathrm{~mm}(400 \mathrm{~V}), 100 \mathrm{~mm}(690 \mathrm{~V})$
S2尺寸：560mm（400V），600mm（690V）

		A			B		C	D	E	F	G	H
	$2 P$	$3 P$	$4 P$	$2 P$	$3 P$	$4 P$						
360A 800A	340	405	470	310	375	440	80	65	60	117.5	$10 / 15$	15
1000A 1250 A	370	450	530	340	420	500	88	80	60	117.5	$12 / 15$	15
$1600 A$	410	510	610	380	480	580	97.5	100	57	117.5	15	15

Product sketch map

M2 and M3 II LED external economic

controller display distribution

M3 Type LCD external controller function.

Indicated definition is just following:

1. Common power A normal indicated light.
2. Button distribution; see the detail in ATS M3 LCD external controller.
3. Ready power B normal indicated light.
4. Mark
5. R phase
6. S phase
7. T phase

8-10: voltage indication value and setting parameter value
11. Voltage mark
12. Second marks of the delay indication

13-16: malfunction information and normal 3-D marks.
17. Indicate the code position when it is setting. Normal is 0 .
18. Network mark A means common network, and in the normal condition it will shine.
19.middle transfer position, when it is transferring, the fan will turn.
20.ready power B.
21.The common power will put in and it will shine.
22.it is ready to put in the common power.
23.it is ready to put in the ready power.
$24 . i$ is putting in the common power, and shine.
25 .it has been putting the common power.
26.in the middle OFF position.
27.in the middle OFF position.
28.malfunction and setting, automatic and manual prompt.

ATS Dual Power Automatic Transfer Switch

M2

connecting diagram

\checkmark A1 A2 (put in signal import by A power,AC220V)
B1 B2 (put in signal import by B power,AC220V)
Notice: A B auxiliary contact can be used in connecting the signal of indicate, alarm or feedback, and that depends on the customer

M2 II, M3 III type internal controller fast wiring diagram.

 generator
DOWN: you can set minus, and it can indicate B volt age when it is automatic, and it can transfer into B power by manual.

- UP: you can set plus, and it can indicate A voltage when it is automatic, and it can transfer into A power by manual.
- B-A: auto/man transfer (LED indicate twinkle that means it is in the manual state)
Notice: 2
A1 A2(put in signal import by A power,AC220V)
B1 B2(put in signal import by B power,AC220V)
G1 G2 (generator contact)

Auxiliary contacts diagram

Notice: 3
A B auxiliary contact can be used in connecting the signal of indicate, alarm or feedback, and that depends on the customer.

Type M2 II, M3 III LED external controller, has aero-pin.

Auxiliary contacts diagram

MQ3 Dual Power Automatic Transfer Switch

Application：

MQ3 series dual power automatic transfer switches（follow brief as setting）is one of adopted interna－
 tional technology developed by our company．The setting is suits for AC 50 Hz ，rated working voltage is 400 V ，rated current 6A－100A and under dual power supply system．It has over voltage，under voltage，lost phases protection function．The setting mainly used for hospital，shopping center，bank，and chemical industry，metallurgy，high building，military facilities．

Standards

IEC 947－6－1（1989）《Automatic Transfer Switch Electric Equipment》。
Environment conditions for operation and installation：
\Rightarrow Ambient temperature：$-5^{\circ} \mathrm{C}-+40^{\circ} \mathrm{C}$ ，and average temperature in24 hours below $+35^{\circ} \mathrm{C}$（except for special orders）．
－Elevation of installation site：$\leqslant 2000 \mathrm{~m}$
Relative humidity：not exceeding 50% at the maximum ambient tem perature of $+40^{\circ} \mathrm{C}$ ．With lower temperature，higher humidity would be permitted，but the lowest average temperature in a month not ex ceeding 90% in that month，and giving consideration to the dews on the goods surface，which would appear due to temperature change．
Pollution protection： 3 grade
－The breaker should be put in the place where there isn＇t any explo sive medium and conductive dust and no gas，which would corrode metal or destroy the insulation．

The main technology parameter：
－The voltage of the automatic controller and motor operation controller is AV220V．

The life of the switch（ $N-R-N$ ）is 5000 times．
－The minimum transfer time is 3 s ．

Specification：

Type	MQ3		
Specification		63	100
Working breaker		MM5	MM5
Frame current	V	63	100
Rated working voltage		400	400
Rated breaker current		$6,10,16,20$, $25,32,40,50,63$	$63,80,100$
Rated limit short circuit braking capability	KA	W	W

Overall and mounting dimensions：

Type Specification	MQ3		
		63	100
－	A（Length）3P／4P	290	372
\cdots	B （Width）	165	195
imension	C（Length）3P／4P	275	342
	D（Width）	115	140
	H（Height）	120	125

ATS Dual Power Automatic Transfer Switch

Operation and connection

- MQ3-63 connection diagram

Connection number	$1-1$	$2-1$	$3-1$	$1-7$	$3-2$	$2-7$	$1-9$	$6-2$	$1-11$	$2-11$			$6-1$	$6-3$	$6-4$	$1-10$	$2-10$
Poles			3	4	3	4											
Order number	L1	L4	Nn	Nn	NR	NR	X 05	N 3	X 13	X 12			X 19	X 20	X 21	X 22	$\times 23$
Terminal number	1	2	3	3	4	4	5	6	7	8	9	10	11	12	13	14	15

Notice: Manual handle is used for urgent.(controller power button in the concave position, is the manual position.)

Maintenance:

The transfer switch panel has two 1A fuses and one trinodal connection terminal. The fuse is used to automatic controller short circuit protection, and the terminal is indicate the signal lamp connects into the controller box panel, and supply the power, the voltage is AC 220 V , current is 150 Ma . And 1 is common power signal lamp power, 2 is ready power signal lamp power.

MQ5 Moulded Case Circuit Breakers

General

MQ5 Dual Power Automatic Transfer Switch Series (hereafter called as MQ5) is a kind of new automatic transfer switch gathered switch and logic controller£"achieve mechanic and electricity turn into a integral whole. It is suitable for using in the distribution equipment in industry and business with rated insulating voltage up to 1000 V , rated frequency 50 Hz , rated voltage 660 V , conventional heating current up to 3200A supplying for switch automatically of common power and reserve power in power system or switch automatically and safety isolation of two sets load device etc. It can be used for hospital, shop, bank, high building, coal mine, telecommunication, iron mine, superhighway, airport, industrial flowing water line and military installation etc. important situation where disallow power supply failure.

The switch is an operation device that various logic order is sent by control circuit board to managing electrical engine, then through gear box, arouses spring store energy, release instantaneously after deceleration. So that can make and break circuit quickly or make circuit transfer. By obvious state can achieve safety insulation

The switch can achieve full-automatic, compulsory " 0 ", remote control, urgent manual-operation; while have lack phase examination and protection, under/over voltage examination and protection, frequency examination and protection and delay regulation, electric mechanism interlock etc. function

Characteristic and Parameter

- The switch conforms to the requirement of GB14048.1, IEC60947-6-1 standard.
\checkmark Rated working voltage(Ue):DC220V, 440V;AC380V, 660 V
- Rated making capacity (ARms):10 le
\rightarrow Rated breaking capacity (ARms):8le

Conventional heating current				32	40	63	80	100	125	160		250	315	400	500	630	1000	1250	1600
Rated insulating voltage				750 V									1000V						
Dielectric Properties				3 kV									5 kV						
Rated impulse withstand voltage				8 kV									12kV						
	380 V		AC-21	32	40	63		100		160	200	250	315	400	500	630	1000	1250	1600
			AC-22	32	40	63	80	100	125	160	200	250	315	400	500	630	1000	1250	1600
			AC-23	32	40	63	80	100	125	160	200	250	315	340	425	536	800	1000	1250
	660V		AC-21	32	40	63	80	100	125	160	200	200	250	315	400	500	800	1000	1250
			AC-22	32	40	6	80	100	125	125	160	200	200	250	315	400	500	800	1000
			AC-23	25	32	32	40	40	63	63	80	100	125	160	200	250	315	400	500
	220 V		AC-21	32	40	63	80	100	125	160	200	250	315	400	500	630	1000	1250	1600
			AC-22	32	40	63	80	100	125	160	200	250	315	400	500	630	800	1000	1250
			AC-23	32	40		80	100	125	160	200	250	315	400	500	550	630	800	1000
	440 V		AC-21	32	40	63	80	100	125	160	200	250	315	400	500	630	800	1000	1250
			AC-22	32	40	63	80	100	125	160	200	250	315	400	500	550	630	800	1000
			AC-23	32		63	80	100	125	160	200	250	315	350	400	500	550	630	800
Rated short time withstand current				7KA					9KA				13KA				26KA		
Rated limit short circuit current				70KA									100KA				120KA		
Operation torque ($\mathrm{N} \cdot \mathrm{M}$)				AC-21					19		26		39				50		
Energy consume			Start	AC-22					325				355				440		
			ormal	AC-23					62				74				98		
Transfer time(S)				0.45									0.6				1.2		
Mechanical life				10000									5500				4000		
Weight (Kg)			poles	4.8					7.2		8		10		10.5		14	15	16
			poles	5.0					7.5		9		11		11.5		16	17.5	19

ATS Dual Power Automatic Transfer Switch

Structure and Characteristic

Electric key lock: Control internal control circuit power. Only when it is open, switch can operated in full automatic, compulsory "0" and remote control. When it is close, the switch only could be operated manually.
\diamond Operation handle: Must close electric lock when use operation handle.

- Mechanical padlock: Check special mechanical padlock device. When checking, transfer the switch at position"0", then pull padlock and hang the padlock to prevent from any accident (When pull padlock, internal control power will be cut off, switch can operated automatically, and can prevent handle from harnessing.
- Instruct piece: Has three state: means switch I is on. II means switch II is on. "0" means switch I , II are all off.

Type	A	B	C	D	E	F	H	K	L	N	P	R	T	$\varnothing \mathrm{X}$	Y	Z
MQ5-32~100/3	215	120	175	100	70	124	200	85	7	30	30	14	2.5	6	38	90
MQ5-32~100/4	245	120	175	130	70	124	230	85	7	30	30	14	2.5	6	38	90
MQ5-125~160/3	268	135	225	140	85	172	245	110	7	33	36	20	3.5	9	56	130
MQ5-125~160/4	298	135	225	170	85	172	275	110	7	33	36	20	3.5	9	56	130
MQ5-200~250/3	310	170	260	180	110	205	285	110	7	38	50	25	3.5	11	60	145
MQ5-200~250/4	360	170	260	230	110	205	335	110	7	38	50	25	3.5	11	60	145
MQ5-315~400/3	375	240	320	225	160	240	350	180	9	42	65	32	5	11	80	188
MQ5-315~4004	435	240	320	290	160	240	415	180	9	42	65	32	5	11	80	188
MQ5-500~630/3	375	260	320	225	160	240	350	180	9	42	65	40	6	13	80	188
MQ5-500~630/4	435	260	320	290	160	240	415	180	9	42	65	40	6	13	80	250
MQ5-1000/3	505	312	370	378	200	295	470	220	11	50	120	60	8	13	108	250
MQ5-1000/4	625	312	370	498	200	295	590	220	11	50	120	60	8	13	108	250
MQ5-1250/3	505	356	370	378	200	295	470	220	11	50	120	80	8	13	108	250
MQ5-1250/4	625	356	370	498	200	295	590	220	11	50	120	80	8	13	108	250
MQ5-1600/3	505	356	370	378	200	295	470	220	11	50	120	80	10	13	108	250
MQ5-1600/4	625	356	370	498	200	295	590	220	11	50	120	80	10	13	108	250

Breakers Install method

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are correct. D is wrong.

Terminal connection method

> Energize downward, imbed wiring as picture.

Main circuit

Regulation Instruction

When use operating handle, operated switch on/off three times, it should be operated neatly.
Full-automatic regulation: discharge handle, connect with relative line, start electric lock, turn on common and reserve power, the switch should transfer to "I" position, then cut off common power, the switch should transfer to "II" position; turn on common power again, the switch should transfer to "I" position back.

- Compulsory "0" regulation: When common power working, start compulsory "0" self-lock button, the switch should transfer to "0" position; when reserve power working, start compulsory "0" self-lock button, the switch should transfer to "0" position.
Long range control regulation: When common power working, start "II" button, the switch should transfer to "II" position; when reserve power working, start "I" button, the switch should transfer to "I" position;

Exam signal indicator light: When common/reserve power is on/off, switch "I/II" making and breaking, electric/mechanic padlock is on/off, any signal indicator light should indicate relatively.

* After regulation, close down the power first, transfer switch to position "0" with handle.

After install, discharge electric key and operating handle and keep respectively preventing accident.

General

This series automatic transfer switch is designed and developed by our company. It complies with GB/ T14048.6 standard. All of parts, components are well selected, the finished products are under continuous 168 hours drying power-on running, and finally pass our serious checkout then leave our factory, thus, greatly ensure the reliability and safety.

Service Range

This series automatic transfer switch which is suitable for using in double power supply system with rated voltage below $415 \mathrm{~V}(660 \mathrm{~V})$, rated frequency $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$, rated working current 63 A and below, which is used in hospital, shop, bank, high building, coal mine, telecommunication, iron mine, superhighway, airport, etc. important situation where disallow power supply failure.

Service Condition

- Not over altitude 2000 m .
\checkmark Ambient temperature : $-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$.
Pollution protection: Class III
-There must be not any explosive medium and no gas that would corrode metal or any con-ducting dust that would destroy the insulation.
Atmospheric condition: the air relative humidity should not be more than 50% at $+40^{\circ} \mathrm{C}$, no higher relative humidity under lower temperature, the average humidity of the wettest month should not be more than $+25^{\circ} \mathrm{C}$, the average max. relative humidity of this month should not be more than 90%;

Overall and Installation Dimensions

-

Specification and Parameter

Pole no. Rated voltage Ue Rated current Ue(V)AC	Frequency	Ultimate short circuit breaking capacity (A)/cos($($)	Mechanical life (times)		
2	(V)AC 220V	6, 10, 16, 20,		$6000 / 0.65$	
3	380 V	25, 32, 40, 50,	$50 / 60$	$4500 / 0.70$	10000
4					

Work Principle

When common source is normal, the functional key is at position "auto", reserve breaker is open and common breaker is close to protect common source for connecting with load, the common power voltage indicator is light. When the common source failures (the voltage is lower than 60% of rated voltage), the common source will transfer to reserve source automatically, the reserved source voltage indicator is ON, the reserved source working indicator is ON. After removing the failure of the common source, this switch will transfer to the common source automatically again.

ATS Dual Power Automatic Transfer Switch

N:Common Source \quad R:Reserved Source
Qn: Common Source Breaker \quad Qr: Reserved Source Breaker
Voltage Discrimination and Phase Lossing
Protection from Common Source Incoming line terminal

Overall and Installation Dimension

MQ6 Integration type

0

MQ6 Integration type Overall and Installation Dimensions

Dimension Specification		-		B		C	H1	H2
	3P	4 P		3P	4P			
MQ6Y-63	400	420	-220	370	390	195	< 142	26
MQ6Y-100	420	480	250	390	450	195	< 142	26
MQ6Y-160	450	520	250	420	490	225	< 160	26
MQ6Y-225	450	520	250	420	490	225	< 160	26
MQ6Y-400	570	660	330	540	630	305	< 196	26
MQ6Y-630	630	750	330	600	720	305	< 196	26
MQ6Y-800	630	- 750	330	600	720	305	< 196	26

MQ6 Divided Type Overall and Installation Dimensions

Dimension Specification	A		D	B		C	H1	H2
	3P	4 P		3P	4 P			
MQ6F-63	380	430	220	370	400	195	< 142	26
MQ6F-100	420	480	250	390	450	225	< 142	26
MQ6F-160	450	520	250	420	490	225	< 160	26
MQ6F-225	450	520	250	420	490	225	< 160	26
MQ6F-400	570	660	330	540	630	305	< 196	26
MQ6F-630	630	750	330	600	720	305	< 196	26
MQ6F-800	630	750	330	600	720	305	< 196	26

Panel Tapping Dimension of Controller: W160 \times H84 \times D105

Main Characteristic

Type	MQ6-100/225	MQ6-400	MQ6-630/800
Mechanism life	5000	3000	2500
Electricity life	1000	1000	500
Total times of usage life	6000	4000	3000
Rated working system	Uninterrupted working system		
Over voltage transfer setting value	115\%Ue (No adjusting, as it has being adjusted before leaving factory)		
Under voltage setting adjust scope	(60\% $\sim 85 \%$)Ue continuous adjustable		
Time of contact transfer	$\leqslant 2 \mathrm{~s}$		
Switch off delay	0.5~30s continuous adjustable		
Switch on delay	0.5~30s continuous adjustable		

Main Technical Data

Type	Selecting circuit breaker	Pole number	Breaking capacity I cu(KA)	Rated current (A)	Rated working voltage(V)	Rated insulating voltage(V)
MQ6-63	MM4-100	3Poles	25,35	$\begin{aligned} & 40,50, \\ & 63,80,100 \end{aligned}$	AC 380(400)	690
		4Poles	35			
MQ6-100	MM4-160	3Poles	35,50	63, 80, 100	AC 380(400)	690
		4Poles		125, 140, 160		
MQ6-225	MM4-250	3Poles	$35,50$	$\begin{gathered} 100,125, ~ 140, ~ \\ 160, ~ 200, ~ 225, ~ 250 \end{gathered}$	AC 380(400)	690
		4Poles	50			
MQ6-400	MM4-400	3Poles	50,65	250, 315, 350, 400	AC 380(400)	690
		4Poles	65			
MQ6-630	MM4-630	3Poles	50,65		AC 380(400)	690
		4Poles	65	400, 500, 630		
MQ6-800	MM4-800	3Poles	50,65	630, 700, 800	AC 380(400)	690
		4Poles	65			

Main Characteristic

Automatic controller exam the voltage of two circuit at the same time. When power voltage higher than rated value 110%, considering over voltage, while lower than rated value $60 \% \sim 80 \%$, considering under voltage. Computer judges and deal with the exam result, then sent orders such as switch on, switch off, generate, uninstall or alarm. The above exam result showed on the control board and also can be connect with computer supply for user to exam reason. Intelligent controller has three types: automatic switch and restore suits for power network -power network and power network -generator, automatic switch without restore suits for power network -power network.

Self-transfer and self-recovery (R) suits for power network -power network
Making is consider as common power acquiescently, when common power is abnormal, it will transfer to zero position after three seconds, and through delayer transfers to reserve power (R) automatically. The delay time can be set $0 \sim 30$ seconds.

Self-transfer and non-self recovery suits for power network -power network
Controller exams and transfers common power (N) and reserve power (R) in the two supplying powers. Consider common power as initial state, when common power (N) is abnormal, it will transfer to zero position after three seconds, and through delayer transfers to reserve power (R) automatically. But it won't restore after common power (N) is normal.

